A Learning Automaton Network and it's Dynamics
نویسندگان
چکیده
منابع مشابه
Learning a deterministic finite automaton with a recurrent neural network
We consider the problem of learning a finite automaton with recurrent neural networks, given a training set of sentences in a language. We train Elman recurrent neural networks on the prediction task and study experimentally what these networks learn. We found that the network tends to encode an approximation of the minimum automaton that accepts only the sentences in the training set.
متن کاملLearning Deterministic Finite Automaton with a Recurrent Neural Network
We consider the problem of learning a nite automaton with recurrent n e u r a l networks from positive evidence. We train Elman recurrent neural networks with a set of sentences in a language and extract a nite automaton by clustering the states of the trained network. We observe that the generalizations beyond the training set, in the language recognized by the extracted automaton, are due to ...
متن کاملThe Neural Network Pushdown Automaton: Architecture, Dynamics and Training
Recurrent neural networks are dynamical network structures which have the capabilities of processing and generating temporal information. To our knowledge the earliest neural network model that processed temporal information was that of MeCulloch and Pitts [McCulloch43]. Kleene [Kleene56] extended this work to show the equivalence of finite automata and McCulloch and Pitts' representation of ne...
متن کاملThe Neural Network Pushdown Automaton: Model, Stack and Learning Simulations
In order for neural networks to learn complex languages or grammars, they must have sufficient computational power or resources to recognize or generate such languages. Though many approaches have been discussed, one obvious approach to enhancing the processing power of a recurrent neural network is to couple it with an external stack memory in effect creating a neural network pushdown automata...
متن کاملReputational Learning and Network Dynamics
In many real world networks agents are initially unsure of each other’s qualities and must learn about each other over time via repeated interactions. This paper is the first to provide a methodology for studying the dynamics of such networks, taking into account that agents differ from each other, that they begin with incomplete information, and that they must learn through past experiences wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1991
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.111.10_490